-A A +A
We present a classical analog of the quantum information metric, which is defined for classical integrable systems that undergo an adiabatic evolution governed by slowly varying parameters. This classical metric measures the distance, on the parameter space, between two infinitesimally different points in phase space, whereas the quantum information metric measures the distance between two infinitesimally different quantum states. We discuss the properties of this metric and calculate its components, exactly in the cases of the generalized harmonic oscillator, the generalized harmonic oscillator with a linear term, and perturbatively for the quartic anharmonic oscillator. Finally, we propose alternative expressions for the quantum information metric and Berry’s connection in terms of quantum operators.
Publication date: 
1 Nov 2018

Diego Gonzalez, Daniel Gutiérrez-Ruiz, J David Vergara

Biblio References: 
arXiv preprint arXiv:1811.09259