-A A +A
Type: 
Journal
Description: 
The monitoring of benzene and other carcinogenic aromatic volatile compounds at the ppb level requires boosting both the selectivity and sensitivity of the corresponding sensors. A workable solution is the introduction in the devices of preconcentrator units containing molecular receptors. In particular, quinoxaline cavitands (QxCav) resulted in very efficient preconcentrator materials for the BTEX in air to the point that they have been successfully implemented in a commercial sensor. In this work, we report a highly efficient quinoxaline-based preconcentrator material, in which the intrinsic adsorption capacity of the QxCav has been maximized. The new material consists of silica particles covalently coated with a suitable functionalized QxCav derivative (QxCav@SiO2). In this way, all the cavities are exposed to the analyte flux, boosting the performance of the resulting preconcentration cartridge well above that of the pure QxCav. It is noteworthy that the preconcentrator adsorption capacity is independent of the relative humidity of the incoming air.
Publisher: 
MDPI
Publication date: 
27 Jun 2022
Authors: 

Andrea Rozzi, Alessandro Pedrini, Roberta Pinalli, Enrico Cozzani, Ivan Elmi, Stefano Zampolli, Enrico Dalcanale

Biblio References: 
Volume: 12 Issue: 13 Pages: 2204
Origin: 
Nanomaterials