-A A +A
One of the cornerstones in non–equilibrium statistical mechanics (NESM) is Liouville's theorem, a differential equation for the phase space probability ρ (q, p; t). This is usually derived considering the flow in or out of a given surface for a physical system (composed of atoms), via more or less heuristic arguments. In this work, we derive the Liouville equation as the partial differential equation governing the dynamics of the time-dependent probability ρ (q, p; t) of finding a “particle” with Lagrangian L (q, q˙; t) in a specific point (q, p) in phase space at time t, with p=∂ L/∂ q˙. This derivation depends only on considerations of inference over a space of continuous paths. Because of its generality, our result is valid not only for “physical” systems but for any model depending on constrained information about position and velocity, such as time series.
AIP Publishing
Publication date: 
26 Jul 2016

Diego González, Sergio Davis

Biblio References: 
Volume: 1757 Issue: 1 Pages: 020003
AIP Conference Proceedings