-A A +A
The article presents a nanoparticle-based buried light-scattering (BLiS) back-reflector design realized through a simplified nanofabrication technique for the purpose of light-management in solar cells. The BLiS structure consists of a flat silver back-reflector with an overlying light-scattering bilayer which is made of a TiO2 dielectric nanoparticles layer with micron-sized inverted pyramidal cavities, buried under a flat-topped silicon nanoparticles layer. The optical properties of this BLiS back-reflector show high broadband and wide angular distribution of diffuse light-scattering. The efficient light-scattering by the buried inverted pyramid back-reflector is shown to effectively improve the short-circuit-current density and efficiency of the overlying n-i-p amorphous silicon solar cells up to 14% and 17.5%, respectively, compared to the reference flat solar cells. A layer of TiO2 nanoparticles with exposed inverted pyramid …
EDP Sciences
Publication date: 
1 Jan 2020

Derese Desta, Rita Rizzoli, Caterina Summonte, Rui N Pereira, Arne Nylandsted Larsen, Peter Balling, Sanjay K Ram

Biblio References: 
Volume: 11 Pages: 2
EPJ Photovoltaics